# Difference between revisions of "Errata in the Handbook of Mathematical Fuzzy Logic"

From Mathfuzzlog

(→Chapter I: Def 1.3.1 missing monotony of the monoidal operation) |
m (→Chapter I: specifying exact location in Def 1.3.1) |
||

Line 3: | Line 3: | ||

=== Chapter I === | === Chapter I === | ||

− | * Page 22, Definition 1.3.1: the condition of monotony of <math>\&</math> with respect to the lattice order is missing | + | * Page 22, Definition 1.3.1, item 2: the condition of monotony of <math>\&</math> with respect to the lattice order is missing |

* Page 52, the axiom (S<math>_n</math>) should read: <math>\neg(\varphi^{n-1})\vee\varphi</math> | * Page 52, the axiom (S<math>_n</math>) should read: <math>\neg(\varphi^{n-1})\vee\varphi</math> |

## Revision as of 16:55, 21 December 2014

## Volume 1

### Chapter I

- Page 22, Definition 1.3.1, item 2: the condition of monotony of
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \&}**with respect to the lattice order is missing

- Page 52, the axiom (S
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle _n}**) should read:**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \neg(\varphi^{n-1})\vee\varphi}**

- Page 92, lines 15–16: the claim of the consistency of naive comprehension over IMTL was in fact a conjecture (which is still unresolved by 2014)

### Chapter II

- Page 115, Proposition 2.2.11: "Let L be a weakly implicative logic L" should be "Let L be a weakly implicative logic in language
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \cal{L}}**".

- Page 116, first line after Definition 2.3.1: "
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \langle \bf{A},F\rangle\in \mathbf{MOD}(L)}**" should be "an**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \cal{L}}**-algebra**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle {\bf \it A}}**".

- Page 117, Definition 2.3.5: In the first item there should be 'coarsest' instead of 'finest'.

- Page 124, Proof of Proposition 2.4.7: The last sentence of the proof "The fact that the set..." should be placed at the beginning of the proof.

- Page 130, Theorem 2.5.7: For SLe, the second and the third formula should have
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \psi}**instead of**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \chi}**.

- Page 144, Definition 2.7.6: It should be "lattice-disjunctive" with hyphen.

- Page 145, Example 2.7.11: In the sixth line, L in the subindex should be IPC.

- Page 162, Corollary 3.2.5: L_1 should be assumed to be finitary.

- Page 166, Footnote 15: It should be "Then we construct
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle K_{i+1}}**".

- Page 168, Theorem 3.3.8: It should be "Let L be a finitary semilinear finitely disjunctional logic".

- Page 169, Theorem 3.3.13: It should be "Let L be a finitary semilinear finitely disjunctional logic".

- Page 173, line 20: It should be "
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle a \rightarrow^\mathbf{A} b\in B'}**".

- Page 173, line 29: It should be "By Theorem 2.7.18".

- Page 175, proof of Proposition 3.4.16: In 2 implies 3 it should be "If all the chains".

- Page 177, Convention 4.0.1: In the second item Nabla must be assumed to be a finite protodisjunction, without parameters.

- Page 181, Example 4.1.18: The example is wrong (the lattice is not distributive). A correct one can be found in page 404 of

- A. Horn. Logic with truth values in a linearly ordered Heyting algebras. Journal of Symbolic Logic, 34(3):395–408, 1969.

- Page 197, line 5:
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle c}**should be**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle c_\mu}**.

- Page 198, Theorem 4.5.7: For the implication from 2 to 1 one should add the extra hypothesis that the class of L-chains admits regular completions, i.e. every L-chain can be embedded into a completely ordered L-chain preserving all existing suprema and infima. This ensures that the model obtained in the proof can be taken safe (if it was not, one would embed it into another over a completely ordered chain).

- Page 198, proof of Theorem 4.5.7: All occurrences of CM
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle '_T}**should be CM**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle _{T'}}**.

## Volume 2

### Chapter XI

- Page 899: Fact 5.1.1 points to a wrong reference. The correct reference is Lemma 3 of Petr Hájek, Making fuzzy description logic more general,
*Fuzzy Sets and Systems*154(1), 1-15, 2005.