A temporal semantics for Basic Logic

From Mathfuzzlog
Jump to: navigation, search
Stefano Aguzzoli
Matteo Bianchi
Vincenzo Marra
Title: A temporal semantics for Basic Logic
Journal: Studia Logica
Volume 92
Number 2
Pages: 147-162
Year: 2009
Download from the publisher


In the context of truth-functional propositional many-valued logics, Hájek’s Basic Fuzzy Logic BL [14] plays a major rôle. The completeness theorem proved in [7] shows that BL is the logic of all continuous t-norms and their residua. This result, however, does not directly yield any meaningful interpretation of the truth values in BL per se. In an attempt to address this issue, in this paper we introduce a complete temporal semantics for BL. Specifically, we show that BL formulas can be interpreted as modal formulas over a flow of time, where the logic of each instant is Łukasiewicz, with a finite or infinite number of truth values. As a main result, we obtain validity with respect to all flows of times that are non-branching to the future, and completeness with respect to all finite linear flows of time, or to an appropriate single infinite linear flow of time. It may be argued that this reduces the problem of establishing a meaningful interpretation of the truth values in BL logic to the analogous problem for Łukasiewicz logic.